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Multiple large-scale coherent mode interactions in 
a developing round jet 
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(Received 21 April 1992 and in revised form 23 September 1992) 

The integral energy method has been used to study the nonlinear interactions of the 
large-scale coherent structure in a spatially developing round jet. The streamwise 
development of a jet is obtained in terms of the mean flow shear-layer momentum 
thickness, the wave-mode kinetic energy and the wave-mode phase angle. With the 
energy method, a system of partial differential equations is reduced to a system of 
ordinary differential equations. The nonlinear differential equations are solved with 
initial conditions which are given at the nozzle exit. It is shown that the initial wave- 
mode energy densities as well as the initial phase angles play a significant role in the 
streamwise evolution of the large-scale coherent wave modes and the mean flow. 

1. Introduction 
The existence of large-scale coherent structure in a round jet has been well 

established by many investigations. Several reviews on the large-scale structures in 
a free shear layer and a round jet are available, including the recent ones by Liu 
(1988, 1989) and Mankbadi (1992). 

It is believed that the helical large-scale coherent mode plays an important role in 
the development of a round jet. Moore (1977) noticed that the axisymmetric and 
first-order helical modes were definitely present in a natural round jet at  all subsonic 
velocities. Drubka (1981) was also able to see three-dimensional structures in the 
initial developing region of a jet. In their flow visualization studies, Dimotakis, 
Miake-Lye & Papantoniou (1983) observed large-scale structures which were 
axisymmetric, or helical, or existed in a transitional state between those two 
configurations, in the fully developed region of turbulent jets. 

Experimental and theoretical studies of a round jet by Fuchs (1974) and Michalke 
& Fuchs (1975) demonstrated the dominance of the first three to four helical modes 
in the pressure fluctuations. Measurements of the pressure fluctuations of the helical 
modes were given by Chan (1977). Strange (1981) showed that the axisymmetric and 
first-order helical modes had comparable growth rates in the initial region of a jet, 
and the turbulence levels in the shear layer were increased noticeably when the jet 
was forced with helical modes. From measurements of the near-field pressure and 
velocities, Drubka (1981) and Drubka, Reisenthel & Nagib (1989) showed that a jet 
was unstable both for the axisymmetric and helical modes. By using short-time 
spectral estimates, Corke, Shakib & Nagib (1991) showed that the axisymmetric and 
helical fundamental modes did not exist at  the same time or space. They showed that 
there was an apparent non-deterministic switching between these modes. 

The energy method was first given by Stuart (1958) for a nonlinear stability 
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F~QTJRE 1 .  Diagram of  the initial region of a round jet. 

analysis. This method was used by KO, Kubota & Lees (1970) in the analysis of the 
nonlinear development of a laminar wake. An application of the energy method to  
a round jet problem was done by Mankbadi & Liu (1981). The flow field was split into 
the mean flow, a monochromatic component of a large-scale structure, and fine- 
grained turbulence. Mankbadi (1985) studied the nonlinear interactions between the 
axisymmetric large-scale coherent structures. He showed that the predicted results 
were in good agreement with experimental measurements. 

In  this study, a formulation and results for the large-scale coherent wave-mode 
interactions in a spatially developing round jet will be presented. A flow quantity is 
assumed to be composed of two major components : the mean flow quantity and the 
large-scale coherent structure. We assume that the jet is artificially excited. Because 
we are interested in the initial developing region of a jet whose initial turbulence level 
is low, the effect of the fine-grained turbulence will be excluded from consideration. 
The large-scale structure is decomposed into five wave modes : axisymmetric, first- 
order helical and second-order helical fundamental modes, and axisymmetric and 
first-order helical subharmonic modes. The helical wave modes are included because 
there is experimental and theoretical evidence which shows that a jet can carry those 
modes as well as the axisymmetric modes. These five modes still belong to the family 
of binary-frequency interactions (Nikitopoulos & Liu 1987). The interactions among 
the mean flow and the wave modes, and among the wave modes themselves (between 
axisymmetric modes, between axisymmetric and helical modes, and between helical 
modes) will be studied by using the energy method. 

With the energy method, a system of partial differential equations is reduced to a 
system of ordinary differential equations. The nonlinear differential equations are 
solved with initial conditions which are given a t  the nozzle exit. I n  contrast to the 
local linear stability theory or weakly nonlinear theory, the streamwise evolution of 
the mean flow momentum thickness and the amplitudes of the wave modes will be 
calculated simultaneously in this study. 

2. Formulation 
The problem considered here is that of a large Reynolds number round jet emitted 

into still air. The mean flow is assumed to be axisymmetric. The coordinate system 
used, as shown in figure 1, has x, r,  and 4 as the streamwise, radial and azimuthal 
directions respectively, and u, u, and 71) are the corresponding velocity components. 
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All flow quantities are non-dimensionalized by the nozzle exit radius, R,, and the 
jet exit mean velocity, U,. The Reynolds number is defined as Re = U,R,/v, 
where v is the kinematic viscosity. 

The interactions between the mean flow and the large-scale coherent structure 
have been studied by applying conditional and time averaging techniques to the flow 
quantities (Liu 1988, 1989). The usual time average is slightly modified for our 
purpose to 

( 1 )  &(x) = T lim + m - ~ I T T  r J ) w ) d t d $ .  

Without fine-grained turbulence (Nikitopoulos & Liu 1987), each flow quantity is 
split into two components: a steady mean flow quantity and a large-scale coherent 
structure : 

4(x, t )  = &(x) + w, 4. (2) 

The large-scale structure is considered to grow and decay spatially and to be periodic 
in time and the azimuthal direction. The large-scale velocity components and 
pressure are decomposed into five wave modes: 

d = d,, + c2, + d,, + czl + d,,, 

v" = v " l o + v " 2 0 + v " l l + ~ ~ ~ + v " ~ 2 2 ,  

65 = Gll + CZ1 + tZz2, 

B = $10 + A 0  + A 1  +P21 + $ 2 2 ,  

where 

where C.C. denotes the complex conjugate, and m/? is the frequency of the wave mode 
mn. The second subscript n is the azimuthal wavenumber. A wave mode is 
axisymmetric if n is equal to zero, and helical otherwise. For simplicity we consider 
only the standing helical modes. The wave modes 20, 21 and 22 are called 
fundamentals and the 10 and 11 modes are called subharmonics. It can be seen that 
the wave modes 20, 21 and 22 arise from direct quadratic interaction between the 
10 and 1 1  modes. These five modes still belong to the family of binary-frequency 
interactions considered in Nikitopoulos 6 Liu (1987) and are consistent with those 
used by Stuart (1962). We model an artificially excited jet where the various 
azimuthal modes are correlated. 

3. Shape assumption 
3.1. MeanJlow 

By following previous works by Mankbadi & Liu (1981) and Mankbadi (1985), a 
hyperbolic tangent mea.n velocity profile which was proposed by Michalke (1971) will 
be used to represent the mean flow in the initial developing region of a jet: 

for O < r < c o ,  
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where 8 is the local momentum thickness defined as 
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With the mean velocity profile in (9), the mean flow is parameterized by the 
momentum thickness only. As a result, the radial integrals involved in the integral 
equations can be obtained for a given 8 instead of a given x. From now on, 8 is treated 
as the independent variable, replacing x, as far as the radial integrals are considered. 

The velocity profile (9) has been confirmed by experiments (for example, Strange 
1981) and has been successfully used for the investigation of the jet instability in the 
potential core region (reviewed by Michalke 1984) although it is not self-similar. 
Monkewitz & Sohn (1988) proposed a more consistent mean flow profile, however, 
they showed that the results of the stability calculation using their profile were in 
good agreement with those using the profile (9). 

3.2. Large-scale coherent structure 
A shape assumption in the form of a travelling wave for the large-scale coherent 

structure is made by following previous works (Liu 1988, 1989). With the 
decomposition as shown in (3)-( 6), the Fourier coefficients in (7)  and (8) are assumed 
to be separable into an unknown finite amplitude and radial shape functions. The 
shape assumptions for wave mode mn are 

( ~ ~ ~ ) = A m n ( x ) e i @ m n ( z )  cos(n#)+c.c., (11) 

G,, = A mn (x) ei@mn(z)z21,,(r) exp (12) 

The subharmonic frequency is one-half of the fundamental frequency. The radial 
shape functions, denoted by ( ), and the complex wavenumber a are obtained from 
the local viscous linear stability theory, which is confirmed by the good agreement 
between the local experimental data and the local inviscid linear stability theory 
(Strange & Crighton 1983 and Cohen & Wygnanski 1987). The radial shape functions 
and a are dependent on x because the result of the local linear theory is dependent 
on 19. The phase angle is introduced because the nonlinear interaction between wave 
modes is dependent on the phase angle differences between them. The amplitude 
A,,, the phase angle @,, and the momentum thickness 8 are determined by solving 
nonlinear integral equations simultaneously. 

We emphasize that the radial shape functions need to be normalized for nonlinear 
calculations. The magnitude of the linear eigenfunctions of the wave mode mn are 
normalized in such a way that 2 d & ,  becomes the kinetic energy content of the mn 
mode across the jet at a given x position: 

The arguments of the eigenfunctions are normalized by taking the argument of the 
complex streamwise eigenfunction a t  the jet centreline to  be equal to zero. 

The linear viscous stability equations are solved by a Runge-Kutta method with 
an orthonormalization technique (Lee 1988). 
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4. Integral equations 
If we apply the boundary-layer approximation to the mean flow equations, 

multiply by U and integrate over a cross-section of a jet, we will get the integral 
mean energy equation : 

where the Reynolds stress term becomes 

4v" = GlO Bl0 + iiiZO BZO + gl1 B,, + BZ1 + 4,, v"222. (15) 
The term on the left-hand side of (14) represents the advection of the mean flow 
energy, the first term on the right-hand side represents the viscous dissipation, and 
the last term represents the energy exchange between the mean flow and the large- 
scale wave modes. 

The integral energy equation of the wave mode mn is obtained by multiplying the 
wave mode velocity components by their corresponding momentum equations, 
adding them together, taking the time average of the sum and integrating over a 
cross-section of the jet : 

k&J:cUrdr = - 4mn@mnrdr 

where 

and (xl, x2, x3) = (x, r ,  4). The mode-mode energy exchange terms are : 

ww10 = - w10 w10 w20 + wll w Z l  WIO - w10 wll W217 

WWZO = WIO WlO WZO + Wl, Wll Wzo, 
WWIl = - Wll WIO Wz1- Wll wz, WlO - Wll Wll w20 - Wll WllW221 

ww21 = w10 Wll wm + w11 WlO WZl, 
Ww22 = wll Wll wZZ7 

where 
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The term on the left-hand side of (16) represents the advection of the energy of the 
wave mode mn by the mean flow. The first term on the right-hand side represents the 
production of the wave mode energy by the work of the mean flow on the Reynolds 
stress. It can be observed that the same term appears in the integral mean energy 
equation (14) with an opposite sign. The second term on the right-hand side 
represents the pressure work. The third term on the right-hand side represents the 
viscous dissipation of the kinetic energy of the wave mode. The last term in (16) 
represents the energy exchange between wave modes. 

The triple correlation term Wi, w k ,  W,, represents the energy exchange between 
wave modes ij and mn. For example, if W,, W,, Wz0 is positive, there is a net energy 
transfer from wave mode 10  to wave mode 20. It is shown in (19)-(23) that the term 
W, w k ,  W,, appears in WW, and WWm, with opposite signs, and the sum of the five 
WW,, is zero. The third wave mode kl is necessary for the energy exchange between 
the ij and mn modes. 

The phase angle equation of wave mode mn is obtained by 

[uI,*,(uI,, momentum equation)-uu',,(uI,, momentum equation)*] + . . . (25) 

where * denotes the complex conjugate. A complete phase angle equation can be 
found in Lee (1988). 

5. Nonlinear analysis 
If we substitute the shape assumptions (9), (11) and (12) into the integral 

equations (14) and (16) and the integral phase angle equation, we can obtain a system 
of coupled nonlinear ordinary differential equations : 

and the mean flow viscous dissipation integral is 
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The mean flow viscous dissipation term becomes very small for a large Reynolds 
number jet, and, therefore, the momentum thickness growth is mainly governed by 
the energy transfer between the mean flow and the wave modes. 

The wave-mode energy advection integral is 

and the wave-mode pressure work integral is 

where h = 2 if n = 0 and h = 0 otherwise and Re is the real part of the complex 
quantity. The wave-mode viscous dissipation term is 

@Wmn. = E m n i v w m n ,  (35) 

where IvWmn can be obtained from (16). The term EMwmn represents the energy 
exchange between the mean flow and wave mode mn, and is defined as 

where the wave-mode production integral is 

dU 
dr 

Re (Gmn G z n )  - r  dr, (37) 

and h = 2 if n = 0 and h = 1 if n =t= 0. The mode-mode energy exchange term WW,, 
is given in (19)-(23) and the triple correlation term becomes 

wij wlcZ wmn = Re (Tij Tkl Tmn) ,  (38) 

where Tij Tkl Tmn = (Eij Ekl ~'if'ki'mn~ exp ( i f i j f k l f m n ) ,  (39) 

and iijikZimn andfijfkzfmn can be obtained from (24). It is clear from (38) and (39) 
that the nonlinear mode-mode energy exchange terms are strongly dependent on the 
phase angle differences between wave modes. 

The terms in the phase angle equation (28) are 
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n Mean flow 

FIGURE 2. Diagrams of the nonlinear energy exchanges: (a )  between the mean flow and the 
wave modes; (a) between the wave modes. 

where the radial integrals are 

A *  dU 
dr 

ID,, = I. Im (dmn 42,J - r dr, 

and h = 2 if n = 0 and h = 1 otherwise. Im is the imaginary part of the complex 
quantity. For the nonlinear mode-mode interaction term PP,, in (28), see Lee 
(1988). 

The diagrams of the energy exchanges between the mean flow and the wave modes, 
and between the wave modes themselves are shown in figure 2. The arrow indicates 
the direction of the energy transfer when EMWmn or W, W,, W,, has a positive value. 
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FIGURE 3. (a )  Amplification rate -ai and ( b )  wavenumber u, of axisymmetric wave modes 20 
( - - - ,  St, = 5.54) and 10 ( . , St, = 2.77) versus momentum thickness 0 when Re = 50000. 

6. Results and discussion 
The differential equations (26), (27 )  and (28)  are solved simultaneously with initial 

conditions di, Emni and +mni. The streamwise development of a jet will be given in 
terms of the local shear-layer momentum thickness, the wave-mode energy and the 
wave-mode phase angle. For all nonlinear calculations, the Reynolds number, based 
on the nozzle exit radius and mean velocity, is 50000 and the initial shear-layer 
momentum thickness, non-dimensionalized by the nozzle exit radius, is 0.006. The 
Strouhal number, based on the nozzle exit diameter (S t ,  = f D J / U J ,  where D, = ZR, 
and f is the frequency), of the fundamental mode is 5.54 (S t ,  = 0.0166), and that of 
the subharmonic mode is 2.77.  The frequency of the fundamental mode is the most 
amplified frequency of the linear viscous stability theory when Re = 50000 and 0 = 
0.006. 

The linear amplification rates - ai and wavenumbers a, of the axisymmetric wave 
modes as functions of the local shear-layer momentum thickness are shown in figure 
3. The Strouhal number 8 t D  of the fundamental mode 20 is 5.54 and that of the 
subharmonic mode I0 is 2.77.  When 8 = 0.006 the amplification rate of the 
fundamental mode is 18.3 and that of' the subharmonic mode is 10.1. The 
fundamental mode becomes neutral when 8 = 0.0147 and the subharmonic mode 
becomes neutral when 0 = 0.0303. The wavenumbers non-dimensionalized by the 
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FIGURE 4. Wave-mode production integral IMWmn versus momentum thickness 0 ; (a) subharmonic 
modes 10 (--) and 11 ( - - - ) ;  (b)  fundamental modes 20 (-), 21 ( - - - )  and 22 (.  ...). 

local shear-layer momentum thickness, a, 0 are 0.202 for the fundamental and 0.067 
for the subharmonic when 0 = 0.006. It is found that the results for the 20, 21 and 
22 modes are almost identical, as are those for the 10 and 11 modes. 

The wave-mode production integral I M w  is shown in figure 4. The sign of the 
integral, which indicates the direction of the energy transfer between the mean flow 
and the wave mode, changes from positive to negative when the wave mode becomes 
linearly stable (0 > 0.0147 for fundamentals, 8 > 0.0303 for subharmonics). The 
wave mode is amplified by extracting energy from the mean flow in the initial region 
of a jet and it is damped by returning energy to the mean flow. In  the damped region, 
the helical mode returns less energy to  the mean flow than the axisymmetric mode. 
The phenomenon of changing the direction of the energy transfer, which was first 
noticed by KO (1969) in the study of a laminar wake, is now widely observed in the 
analyses of developing shear flows. A comprehensive discussion about the negative 
energy production can be found in Liu (1988, 1989). 

For given initial values of the total phase angle differences f g j f k l f m n i ,  the initial 
values of Ghe phase angles $mai can be determined. From now on, for notational 

= fllfilfloi = - 7 ~  (or 0) andfioflofioi = n: (or 27~). A maximum amount of energy will 
be initially transferred from the fundamentals to the subharmonics when#ji = - 7 ~ .  

and 
#ji = -n: is shown in figures 5 and 6. The shear-layer momentum thickness 8 (figure 5 )  

simplicity we will~seflfi = - 7~ (0'0) whenfiifiifzoi = fiifilfizi = fiof~lfili = fllfiofiii 

The streamwise evolution of a jet when Emni (for all five modes) = 
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FIGURE 5. Development of the momemtum thickness 0 when there are five modes; 
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X 

El,, = El,, = EZoi = E,,, = E,zi = and f f f ,  = --K. 

grows when the mean flow loses its kinetic energy. In  the early stage of the 
development of 8 where 0 < x < 0.3, the fundamental energy production terms 
EMW20, EMWPl and EM,,, are much larger than the subharmonic terms EMWlO and 
EM,,, and the mean flow viscous dissipation term GM. Therefore, the initial growth 
of 8 is mainly governed by the energy transfer from the mean flow to the 
fundamentals. The growth rate d8/dx decreases as the fundamental energy pro- 
duction terms decrease, and increases again because of the energy transfer from the 
mean flow to the subharmonics. The fundamental extracts energy from the mean 
flow where 0 < x  < 0.35 and returns energy to the mean flow where x > 0.35, while 
the mean flow loses energy to the subharmonics in the whole region. The decreasing 
value of 8 in the regions where 0.48 < x < 0.65 and 0.85 < x  < 1.0 is due to the 
negative fundamental energy production. In  the downstream region where x > 1.3, 
the effect of the fundamentals on the development of the mean flow is very small and 
the momentum thickness grows mainly due to the energy transfer from the mean 
flow to  the subharmonics. The effect of the viscous dissipation on the development 
of the mean flow is negligibly small. 

The fundamental energy densities E,,, E,, and E,,, shown in figure 6, grow due to 
the energy transfer from the mean flow to the fundamentals in the region where 
0 < x < 0.3. In  this region, the fundamental energy production terms are much larger 
than the viscous dissipation terms (GWmn) and the nonlinear mode-mode energy 
exchange terms ( WW,,). As shown in figure 4, the fundamental-mode production 
integrals IMwzO, IMw21 and I M W 2 ,  are almost identical when the wave modes are 
linearly unstable. As a result, the fundamental energy densities E,,, E,, and E,, grow 
identically until they reach peak values. The phenomenon is consistent with the 
experimental observations by Drubka (1981) who showed that the axisymmetric and 
first-order helical modes grew almost identically in the initial region of jet 
development. I n  the region where z > 0.3, the nonlinear mode-mode interactions 
become very strong and the development of the fundamentals is strongly dependent 
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FIGURE 6. Development of the energy densities when there are five modes: (a) fundamental energy 
densities E,, (-), E,, ( *  * 1 * )  and E,, ( - - - ) ;  (b)  subharmonic energy densities El,  (-) and 
El, (. . . - ) ;  Em,, = and flf, = -z. 
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FIGURE 7. Effect of the initial phase angle difference on the development of the momentum 
thickness 8whenE,,,= andflf,= --n. (-), -$z (-.-), 0 ( - - . - )  andin (---).  

on the mode-mode energy exchanges. The fluctuations in the streamwise de- 
velopment of the fundamentals, which occur after they are fully grown, have been 
observed in the experimental studies by Laufer & Zhang (1983) and Drubka (1981). 
Drubka (1981) also showed that the axisymmetric and first-order helical fundamental 
modes developed differently after they reached peak values. The subharmonics 
start to  grow at lower growth rates than the fundamentals because they initially 
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FIGURE 8. Effect of the initial phase angle difference on the development of the energy densities 
when Em,, = and#fi = --A (-) and 0 ( .  . . . ) :  (a) Ezo;  (6) Ezl; (c )  E z z ;  (d) El,,; (e) Ell. 

extract a smaller amount of energy from the mean flow. In  the region where 
0 < x  < 0.3, there are small fluctuations in the subharmonic energy densities El, 
and Ell because the nonlinear modemode energy exchange terms WW,, and 
WW,, are comparable with the subharmonic energy production terms E,,,, and 
E,,,,. Because of the large amount of energy transferred from the fundamentals to 
the subharmonics, the growth rates of subharmonics are considerably increased in 
the region where 0.3 < x < 0.4. 

The result shown in figure 6 is consistent with the experimental result by Corke & 
Kusek (1993) who studied the mode-mode interaction in a round jet by forcing an 
axisymmetric mode and helical modes of n = & 1.  The axisymmetric mode was forced 
at  the harmonic frequency of the helical mode. They showed that the axisymmetric 
mode grew according to the linear stability theory throughout the initial region. 
However, the initial linear growth of the helical mode was followed by a sharp 
increase. 
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FIGURE 9. Effect of the initial energy density on the development of the momentum thickness 8. 
El,, = Ell, = E,,, = EZli = EZzi = lo-* (--), (-a -), ( - - - ) ,  (. * * + ) ,  and 

(-); fffi = -n. 

X 

FIQURE 10. Effect of the initial energy density of wave mode 20 on the development of the 
momentum thickness 8. Ezoi = (-) ; EIoi = Elli ( - - - ) ,  lo-' ( .  . . .), (- - -) and 
= Ezli = Ezzi = ; fj" = --R. 

Figures 7 and 8 show the effect of the initial phase angle difference on the 
development of a jet when Em,, = lop3. Four different values of the initial total 
phase angle difference, fffi = -n ,  - in, 0 and in, are examined. In  the initial region of 
a jet, the different initial values offfji do not affect the development of the shear- 
layer momentum thickness and the fundamental energy densities. However, the 
initial growth of the subharmonic energy densities is dependent on the initial total 
phase angle difference. The peak values of the fundamental energy densities when 
fffi = 0 are greater than those whenJfi = -n. The shear-layer momentum thickness 
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FIGURE 11. Effect of the initial energy density of wave mode 20 on the development of (a )  E z o ;  ( b )  
E z l ; ( c ) E 2 , ;  (d)E,,; (e )E, , .E , , ,=  lo- ' ( - - - ) ,  ~O~4(--~)and10~2(---);E,,,=E11,=Ez1i=Ez2i 
= 10-8; jy, = -7T. 

grows almost monotonically when #fi = in. The fastest growth of the momentum 
thickness is obtained when #fi = in. 

The effect of the initial energy density on the development of the shear-layer 
momentum thickness is shown in figure 9. The initial conditions are fff, = -n 
and Em,, ( =  El,, = Ell, = E,,, = E,,, = E,,,) = lop8, lopfi, lo+', and lop3. The 
momentum thickness grows faster when the initial energy density is increased. The 
peak values of the momentum thickness are not strongly affected by the initial value 
of the energy density. The delayed growth of the momentum thickness, which is 
observed in the region where 0.5 < x < 1 when Emni = lopfi and lop8, does not occur 
when the initial energy density is high. 

Figures 10 and 11 show the results of the nonlinear analysis when the axisymmetric 
fundamental mode 20 is forced with different initial values, EZoi = lopfi, lop5, lop4 
and lo-', while the initial energy densities of the other modes are kept constant, 
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FIQURE 12. Effect of the initial energy density of wave mode 10 on the development of the 
momentum thickness 0. El,, = loe6 ( - - - ) ,  (-); El,, = E,,, (. * * .), (- . -) and 
= Ezli = E,,, = lo-'; flfi = --x. 
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FIQURE 13. Effect of the initial energy densities of axisymmetric modes 10 and 20 on the 
development of the momemtum thickness 0. El,, = E,,, = (- .-) 
and 

( - - - ) ,  ( .  . . .), 
(-); Ell, = BZli = E,, = flji = --R. 

Enni = and fffi = --K. When the initial energy density of the 20 mode is 
increased, the initial growth rate of the shear-layer momentum thickness is increased 
and E,, reaches a peak value at  an earlier streamwise position. When E,,, is higher 
than E,,, end E,,,, the fast growth of the momentum thickness lessens the total 
amount of energy transferred from the mean flow to the helical fundamental modes. 
Therefore, the initial growth rates of E,, and E,, decrease as E,,, increases. When EZoi 
is increased, the subharmonic energy densities grow faster and reach peak values at 
earlier streamwise positions. 

Figure 12 shows the results of the calculations when the axisymmetric subharmonic 



Coherent mode interactions in a developing j e t  399 

t 

x 
FIGURE 14. Binary-mode interactions ; - , the 10 and 20 mode 
22 mode interaction. EIoi = Ezoi (or Ell, = E,,,) = 
flJllf,,i) = 7 ~ .  

interaction ; - - -, tile 11 and 
and lo+; flofiofzoi (or 

mode 10 is forced with different initial values, ElOi = and while 
the initial values of the other modes, Elli = EZoi = and the initial 
total phase angle difference, #fi = -z, are kept constant. When E,,, = the 
magnitude of EMMWlO, which represents the energy transfer from the mean flow to the 
10 mode, is much greater than the other terms in the integral energy equation. 
Therefore, the mean flow and the 10 mode grow as if there is only the 10 mode 
present. In  general, when the initial value of the energy density of the 10 mode is 
larger than the other modes, the other modes do not affect the development of the 
shear-layer momentum thickness throughout the whole region. 

Figure 13 shows the result of the nonlinear analysis when the axisymmetric 
fundamental mode 20 and subharmonic mode 10 are forced, Eloi = E2,i = 

The initial energy density of the other modes, Ell, = E,,, = E22i 
= and the initial total phase angle difference, ffi = - A ,  are kept constant. 
When the initial value of the energy densities of the axisymmetric modes is large, the 
helical modes do not affect the development of 8. 

We have shown the results when all of the five modes were initially present. One 
may need to kill some of the modes in order to understand which type of interaction 
is important to the control of the mixing rate. Figure 14 shows the results of two 
binary-mode interactions. The results of the axisymmetric mode interaction, where 
only the 10 and 20 modes are present, are plotted as the solid curves. The dotted lines 
depict the results of the interaction when there are only two helical modes, 11 and 
22. In the calculation the wave modes are forced with different initial values, 
EIoi = E,,, (or Elli = E22i) = and The initial total phase 
angle difference fioflofioi or fllfllfazi is R. The momentum thickness grows faster in 
the two-helical-mode interaction than in the two-axisymmetric-mode interaction. 

= E22i = 

and 
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7. Concluding remarks 
The results of the five-mode interaction show that the axisymmetric and helical 

modes grow almost identically in the initial region until the energy densities of the 
fundamental modes reach peak values. When the initial energy densities of the 
fundamental and subharmonic modes are equal, the initial growth of the shear-layer 
momentum thickness and the fundamental energy densities is mainly governed by 
the energy transfer from the mean flow to the fundamental modes. The subharmonic 
energy densities reach peak values at  earlier or later streamwise positions than in the 
linear case, depending upon the energy transfer between the fundamental and 
subharmonic modes. The nonlinear interaction between wave modes is strongly 
dependent on the phase angle difference between them. It is emphasized that the 
initial phase angle differences between modes as well as the initial energy densities 
play a significant role in the streamwise evolution of the mean flow and the large- 
scale coherent modes. 

The present work not only contributes to fundamental understanding of the initial 
development of a jet but also provides an idea for controlling of a jet. For instance, 
one can control the jet spreading by optimizing the initial conditions of the wave- 
mode amplitudes. This has some technical applications, for example in reducing jet 
noise, improving combustion and reducing emission. 
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